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ABSTRACT 
Two finite-difference methods  for, geophysical .fluid  problems  are described, and  stability  conditions of these 

schemes  arc discussed. These  two  schemes  are  formulated  based  upon  a  similar  procedure given by  Lax  and 
Wendroff in  order to  obtain  a second-order accuracy  in  finite-difference  equations.  However,  the  two  schemes 
show remarkable differcnces.io their  computational  stability. One scheme is stable,  as  one  might  expect,  under  the 
usual  stability  conditions of Courant-Friedrichs-Lewy  and Lax-Wendroff. However,  the  other  scheme is conditionally 
stable only if the flow is supcrcritical  (supersonic  in  the case of gas dynamics)  and  unconditionally  unstable if the 
flow is subcritical  (subsonic). 

1. INTRODUCTION 

In geophysical fluid problems,  one must  often solve 
numerically the  pnrtial differential equations  that govern 
the one-dimensional  motion of a honmgeneous incompress- 
ible fluid (e.g., Stoker [SI), 

b ZG bu bh 
bt u "g "f b x   b x  
-= - 

where 1 and x denote  the  time  and  the  space variable. 
u ( = u ( x , t ) )  and h(=h(z,t)) represent  the speed and  the 
depth of the fluid,  and g stands for  t,he  acceleration due 
to  gravity.  For  this first-order system,  the  characteristic 
directions -7=dx:dt are defined by 

u--7 g I h u-4 =O, 

hence T=U& Jgh. The  system is hyperbolic since there 
are two distinct r e d  root,s -7 (Courant  and  Hilbert [2]). 

Richtmyer [7] made a survey of difference methods 
which are applicable to a hyperbolic system  such  as (1). 
I n  this  paper, we shall describe two additional  finite- 
difference methods of second-order accuracy which are 
formulated based upon a simi1n.r procedure given by 
Lt~x  and Wendroff [4]. Our  main concern will be t o  
point  out  remarkable differences in  the  computational 
stability of the two schemes in  spite of close similarity. 
I11 this discussion, stability will be  taken  to  mean  the 
stability of the corresponding linearized system with 
constant coefficients (Richtmyer [5]). 

The linearized equations of (1) may  be  written  as 

where C= dgH, H denotes a constant  depth of the fluid, 
&=u/C and h=h/H. Here U denotes a constant speed 
of the fluid. From  this  point  on, we shall  omit  writing 
circumflex symbols  for dimensionless variables 6 and h 
whenever  references are  made  to (2). 

In  order to  write down difference equations, we shall 
use a rectangular  net  in  the x-l  plane,  with spacings A z  
and At. We  abbreviate  any  function f ( x ,  t )  of x=lAx 
and t=mAt as f: or [f]; where 1 and m can be either 
an  integar or hall an odd  integer. 

A 

A 

2. FINITE-DIFFERENCE  METHOD I 

In this scheme, there will occur values of u at  integer 
space points  and hall-odd-integer times, and  values of h a t  
half-odd-integer space points  and  integer times as illus- 
trated  in figure 1. The following scheme was suggested 
by  Richtmyer [6], but its stability condition was not 
discussed. The  stability of a similar  method is investi- 
gated by E'ischer [3], but  the analysis is limited to long- 
wave Fourier components. 

The difference iorm of ( 2 )  may be written as 

all haw difierent meanings as defined respectively by (4). ( 5 ) ,  in ( 5 ) ,  and by (7). 
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FIGURE 1.-Lattice structure for method I: n and j are  integers. 

where n and j are  integers,  and (dflbx);" denotes  the 
evalua.tion of b f /bx  at  the time  level m and  the space 
point 1. For second-order  accuracy in Ax, we use the 
centered  approximation 

(b.f/b~);"=(jl;l/z-fIn-1/2)/Ax (4) 

with Ax as the difference interval.  (This can be done, 
because the  space  point 1 falls in the middle of the two 
a,djacent  points  which  carry  values off. ) 

In  order to  evaluate bu /bx  at  integer  time levels (when 
only h's are  available)  and bh/bx  at half-odd-integer 
time  levels  (when  only u's are  available), we expand  these 
derivatives  into  Taylor series in  time  and  retain  enough 
terms to ensure that, ( 3 )  has second-order accuracy in A ,  
as was done by  Lax  and Wendroff [4]. 

The  results  are 

where (bjlbx);" denotes  the  evaluation of b f / b x  a t  the 
time level m and  the  space  point 1. In  contrast to  the 
formula (4)' we use 2Ax as the difference interval  and 
approximate 

(This  is  done  because  the  space  point 1 coincides  with  one 
of the'points a t  which values of j appear.)  Note  that ( 2 )  

is used to  eliminate  the  time  dependent  terms  in (5) and 
(6). The  evaluation of the second term  in  the  brackets of 
( 5 )  and o€ (6) is not  made at  the same  time  level  as  for  the 
first  term  in  the  brackets,  but  this  approximation  causw 
an  error of only  third  order  in A which  can be neglected 
in the scheme of second-order  accuracy.  Since h's are 
not available a t  integer  space  points  and u's are  not  at 
half-odd-integer  space points,  the second term  in  the 
brackets of (5) and (6) may  be  evaluated  with  the following 
space  averaging, 

where 

Let us substitute  in (3) typical  Fourier  terms 

U;+1/2=Un-?-1/2 e i k U A z !  

hl;+~1z=hne'k10'+l/2)a2). 

With  the aid of formulas (4)-(9) and  calling 

Q=i sin e+a(l-cos e) ,  

P=(2 i+a  sin e) sin --f 2 
e 

At At 
Ax Ax 

a=U - 7  p=C -2 O=kAx, 

where 

is  the amplification matrix.  The von Neumann  stability 
condition  requires that  the eigenvalues of the amplifica- 
tion matrix  should  not exceed unity  in  absolute  value for 
physica,lly stable  systems  (e.g.,  Richtmyer [5]). The 
eigenvalues of (13) are  the  roots of 

x2- (2a+d2)X+a2=0. (14) 

Although  this is only  a  quadratic  equation;  the  fact  that 
a and d are complex  makes it difficult to see the  conditions 
for which 1x1 5 1. We, therefore, will discuss  special  cases 
first. 
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Case 1.1 in which C=O. 
In  case the  gravity-wave  speed C vanishes, we have 

d = O  and  the  two  equations c11) and (12) are  uncoupled. 
Equation (14) reduces to (X-a)2=0 and 

l--cw2(1-cos e ) } 2 + a 2  s i d e ,  

=1--a2(1-ff2)(i-cos e)'.  

We wish 1x1 to  be  equal  or less than  unity; hence we must 
have I . a I I  1 or 

for stability  as discussed by  Lax  and Wendroff  [4]. 
Case I .2  in which U=O. 
I n  case the  advective flow speed U vanishes,  equation 

(14) reduces  to 

To  keep  the  roots of this  equation  in  or on the  unit circle, 

which  is the well-known stability  condition  by  Courant, 
Friedrichs,  and  Lewy [l]. 

Case I.3 in which U#C#O. 
In  this general case, the roots of (14) were computed 

numerically for various values of U, C, and O defined in 
(10). In  figure 2, the  magnitude of the  largest  root  is 
plotted  against la1 as  the abscissa and  as  the  ordinate. 
This  largest  root is found  €or O=n, namely kAx=?r. 
Since k is  the  wave  number defined by k =2nlL, where L 
is  the  wavelength,  the case of O=n corresponds to  that of 
L=2Ax, the  shortest  wavelength which the  grid  can 
resolve. In  this case, we have  €rom (10) that 

&=2a, P=2i, 

a=1-2a2, d= -2pi. 

Then,  equation (14) reduces  to 

P-2{ 1-2(ff2+/32) }X+(1-2ff2)2=0. 

The  roots of this  equation  are 

X=l-2(ff'+p')f2pJ2a2+p-l. 

I n  figure 2, the  curve 1=2a2+p2 is  shown by  the chain 
line running  through  the  trough of the  contours.  For 
2a2+p2<1 on the le&-hand  side of the  chain  line,  the two 
roots become  complex  conjugate and  their  magnitudes  are 
both  equal  to 1 1 - 2 4  which  does not  depend  upon  the 
parameter p. For 2a2+p2>1 on the  right-hand  side of 
the  chain line in figure 2, i t  can  be shown that  the two 

\ \ 

29 

0 

FIGURE 2.--Magnitude of the largest root ( O = ? r )  of equation (14), 
plotted  against la1 and p (method I). 

roots  are  real  and  negative; one of the  roots becomes 
equal  to -1 for a2+p=1 and  the  roots of (14) must  all 
lie in or on  the  unit circle for 

One  might  say  that  the  above  stability  condition  is  a 
reasonable  one and  in  fact one  can ('guess'' intuitively 
this  kind of result from the  stability  conditions (15) and 
(16) of the two special cases. However,  the  stability 
analysis of the  next  method will demonstrate  an example 
that such  a "guess" does not necessarily work. 

3. FINITE-DIFFERENCE  METHOD II 

We will now  modify  the  method I in the following 
manner. I n  this scheme, there will appear values of u 
at half-odd-integer times  and  integer  space  points  (just 
as in  method I). However,  values of h appear also a t  
integer  space  points but only a t  integer  times  (therefore 
half-odd-integer space  points  are  removed)  as  illustrated 
in figure 3. The difference form of (2) may now be 
written 

Here, we have used the  same  notations  as  introduced  in 
method I .  

As discussed in connection with (5) and (6), we expand 
similarly 
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0 :  h 0 : "  h2-(2a+b2)X+a2=0. (22) 

n + l  

t 
Case II.1 in which C=O. 
The  stability  condition in this case is exactly  the  same 

as that of Case 1.1, namely 

n +  1/2 
t 
a Iu 51. ( 2 3 )  

W r Case II .2  in which U=O. - 
" n  In  this case, equation (22) reduces  to 

X2-(2-p2 sin2 e)X+1=0. (24) 

To keep the roots of (24) in  or  on  the  unit circle, we must 
have Ip  sin el 1 2  or n -  1/2 

j- I j j+  I 

SPACE -AX- 
C- At <1 (2Ax) - 

FIGURE 3.-Lattice structure for method 11: n and j are integers. 
which  corresponds to  the C- F-L condition (16) of 
Case  1.2. 

Case 11.3 in whic.1~ I UI = C#O. 
In  this case, we have from (21) t,hat a= 1-a& and 

b- 7 a&. Equation (22) reduces to 

X2-(l+a2)X+a2=0. (26) 

One of the  roots of (26) is a2 and  the  other is unity! 
Therefore  the  stability  in  this case is  determined  only  from 
the condition tha,t la15 1 which  leads  to the same condi- 
tion as (15) discussed in Case 1.1. 

(G), (2'o) In this general case, the  roots of (22) were  calculated 
numericnlly for various values of U, C, and e defined in 

Note  that  the second t.ern1 in  the  brackets of (19) and (21). I n  figure 4, t h e  magnitude of the  largest r o o t  of 

second  derivatives are evaluated  with the centered dif- ordinate.  This  largest  root  is  obtained for e=a. I n  this 

n + l P  Case II.4 in which U#C#O. 

(20) can be computed a t  j-points  djrectly. The first and ( 2 2 )  is plotted 'gainst as the 'Ild f l  as the 

case, we have from (21) that ference formulas  (4), (7), and (9).  
By introducing a typical  Fourier  term 

into (18) 'and'  taking  into  account (19) 
formulas (4), (7), and (9), and calling 

Q = i  sin  B+a(l-cos e), 
At  At 
Ax Ax a=U - J  / ~ = C - J  O=kAx, 

a=I--at&, b=-P&, 
we obtain 

where 

Equation (22) then reduces to 

and (20) with 
x2-2(1-2a2+2a2p2)X+(1-2a2)2=0. 

The  roots of this  equation  are 

> t  1n figure 4, the  curve 1 = a2(2-p2)  is shown by n chain 
line. For l<a2 (2-02)  on the  right-hand side of the  chain 
line, the two  roots  become  complex  conjugate  and  their 

(21) magnitudes  are  both  equal  to )1"2a21 which  does not 
depend  upon  the  parameter p. For 1>a2(2-/32) on the 
left-hand side of the chain line  in figure 4, it can  be shown 
that  the two roots  are real and positive, and one of the 
roots (larger one) becomes greater  than  or  equal  to  unity 
depending  upon p2 IaI. 

In conclusion, the  method T I  is unconditionally  unstable 
The eigenvalues of G are  the  roots of the  equation for O<lUl<C (i.e., a subcritical  or  subsonic -flow) and 
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FIGURE $.--hlngnitudc of thc ltwgcst root (S=s) of equation ( 2 2 ) ,  
plotted  against la1 and /3 (mcthod 11). 

conditiondy st’able  for [ U [  2 C 2 0  (i.e., a supercritical 
or supersonic flow) provided thnt JUAt/AxJ 51, the 
Lu-Wendroff condition. If U is zero, the  stability 
condition is CAtl(2Az) 5 1. 

4. REMARKS 
When  one wt~nts to solve IL p:Lrtial differentid  equ n t’ 1011 

nun1ericdly,  one must first m i t e  down finite-difference 
form of the differential  equation and then study  the 
st,ability  property of the difl’erence equation  before  ever 
attempting to integrate  the  equation. It is customary  to 
check the sttibility of the difference scheme  in the von 
Neumann sense, that  is  the  stability of the  co~~espondiug 
linelxrized system wit11 constant coefficients. However, 
i t  is not nlmays easy to obtnin analytically the von Neu- 
numn condit,ion for  stlibility for the  system  in which 
mnny physical factors suc.11 ns ~lvection,  gravity waves, 
dissipation,  etc., are  involved. It is tempt,ing,  therefore, 
to  introduce  approxinlations of various degrees in  order 
to simplify the sta,bility  analysis.  One of the common 
approximations  is to check the  stability of difference 

at one time. Then one  writes down it stability  criterion 
inclusive of a11 the  stability conditions obtained  separately 
for every  physical  factor. By doing so, one  simply  hopes 
t,hat  the combined stability  criterion is as good ns the 
“complete” stability condition  which  would  take  into 
account d l  physical factors  under consideration. 

It mas shown in  this  note  that  such a practice  is a bad one 
t8hrough the  demonstration of it counter  example to  this 
procedure. For  such problems, it is recommended that 
the  evaluation of eigenvalues of the amplification matrix 
should be performed analyticdly or numerically  for 
vmious vdues of all the physicid parameters involved 
in  the  system  in  order  to  determine  the  ranges of the 
physic,d p:w;imeters for  which the eigenvalues we  equal 
t,o or less than  unity  in  mngnitude for  physically sttxble 
systems, and the eigenvalues do not exceed 1+0 (At) for 
problems in which there is 2% meclmnism permitting a 
growth of the  true  solution. 
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